请勿删除本通知!

这是锑星百科的沙盒页面。您可在此随意练习编辑。
如要测试模板,可在模板沙盒中进行编辑。

注意事项:
File:SandboxIcon.png
  • 不要在此撰写条目或存放其他有价值的内容。
  • 不要将此页面重定向至其他页面。
  • 不要在其他页面中使用此模板。
  • 不要在沙盒里保存有侵犯他人版权、攻击性、诽谤中伤他人或他人隐私的内容。
  • 不要在沙盒里保存违反超理准则的内容。
  • 不要移除此通知。
相关链接:

<math> 1.\int \frac{\mathrm{d}x}{1+e^{x}} \\ 解:令1+e^{x}=t \\ 则x=\ln \left ( t-1\right ) \\ \mathrm{d}x=\mathrm{d}\left [\ln \left ( t-1\right ) \right ]=\frac{1}{t-1}\mathrm{d}t \\ 原式=\int \frac{\mathrm{d}t}{t\left ( t-1\right )} \\ =\int \left ( \frac{1}{t-1}-\frac{1}{t}\right )\mathrm{d}t \\ =\int \frac{1}{t-1}\mathrm{d}t-\int \frac{1}{t}\mathrm{d}t \\ =\ln \left | t-1\right |-\ln \left | t\right |+C \\ =x-\ln \left ( 1+e^{x}\right )+C \\ 2.\int \frac{x}{1+x^{4}}\mathrm{d}x \\ 解:原式=\int \frac{\frac{1}{2}\mathrm{d}x^{2}}{1+x^{4}} \\ =\frac{1}{2}\arctan x^{2}+C \\ 3.\int \frac{\ln{x}}{x}\mathrm{d}x \\ 解:原式=\int \ln x\mathrm{d}\left ( \ln x\right )=\frac{1}{2}\ln ^{2}x+C \\ 4.\int \frac{1}{x\left ( a\ln x+b\right )}\mathrm{d}x \\ 解:原式=\frac{1}{a}\int \frac{\mathrm{d}\left ( a\ln x+b\right )}{a\ln x+b}=\frac{1}{a}\ln \left | a\ln x+b\right |+C \\ 5.\int \frac{e^{x}}{1+e^{2x}}\mathrm{d}x \\ 解:原式=\int \frac{\mathrm{d}e^{x}}{1+e^{2x}}=\arctan e^{x}+C \\ 6.\int \frac{e^{-x}}{\sqrt{1-e^{-2x}}}\mathrm{d}x \\ 解:原式=-\int \frac{\mathrm{d}e^{-x}}{\sqrt{1-e^{-2x}}}=-\arcsin e^{-x}+C \\ 7.\int \sin^{n} x\cos x\mathrm{d}x \\ 解:原式=\int \sin^{n} x\mathrm{d}\left ( \sin x\right ) \\ \frac{\sin^{n+1} x}{n+1}+C \\ 8.\int \cos ^{3}x\mathrm{d}x \\ 解:原式=\int \cos ^{2}x\mathrm{d}\left ( \sin x\right ) \\ =\int \left ( 1-\sin ^{2}x\right )\mathrm{d}\left ( \sin x\right ) \\ =\int \mathrm{d}\sin x-\int \sin ^{2}x\mathrm{d}\left ( \sin x\right ) \\ =\sin x-\frac{1}{3}\sin ^{3}x+C \\ 9.\int \sec ^{3}x\tan x\mathrm{d}x \\ 解:原式=\int \frac{\sin x}{\cos ^{4}x}\mathrm{d}x \\ =-\int \frac{\mathrm{d}\cos x}{\cos ^{4}x} \\ =\frac{1}{3\cos ^{3}x}+C \\ 10.\int \frac{\left ( \arcsin x+2\right )^{2}}{\sqrt{1-x^{2}}}\mathrm{d}x \\ 解:原式=\int \left ( \arcsin x+2\right )^{2}\mathrm{d}\left ( \arcsin x+2\right )=\frac{\left ( \arcsin x+2\right )^{3}}{3}+C \\ 11.\int \frac{\sqrt{\arctan x+1}}{1+x^{2}}\mathrm{d}x \\ 解:原式=\int \sqrt{\arctan x+1}\mathrm{d}\left ( \arctan x+1\right ) \\ =\frac{2}{3}\left ( \arctan x+1\right )^{\frac{3}{2}}+C \\ =\frac{2\left ( \arctan x+1\right )\sqrt{\arctan x+1}}{3}+C </math>


<math> 8.(17).\int \frac{\mathrm{d}x}{\sqrt{4-9x^{2}}} \\ 解:令\frac{3}{2}x=\sin t, \\ 则x=\frac{2}{3}\sin t \\ \mathrm{d}x=\mathrm{d}\left ( \frac{2}{3}\sin t\right )=\frac{2}{3}\cos t\mathrm{d}t \\ 原式=\frac{1}{2}\cdot \frac{2}{3}\int \frac{\cos t\mathrm{d}t}{\sqrt{1-\sin^{2}t}} \\ =\frac{1}{3}\int \mathrm{d}t=\frac{1}{3}t+C=\frac{1}{3}\arcsin \frac{3}{2}x+C \\ (25).\int e^{\sin x}\cos x\mathrm{d}x \\ 解:原式=\int e^{\sin x}\mathrm{d}\left ( \sin x \right ) \\ =e^{\sin x}+C \\ (26).\int e^{x}\cos e^{x}\mathrm{d}x \\ 解:原式=\int \cos e^{x}\mathrm{d}e^{x} \\ =\sin e^{x}+C \\ (34).\int \frac{\mathrm{d}x}{e^{x}-1} \\ 解:令e^{x}-1=t,则x=\ln \left ( t+1\right ), \\ \mathrm{d}x=\frac{1}{t+1}\mathrm{d}t \\ 则原式=\int \frac{1}{t\left ( t+1\right )}\mathrm{d}t \\ =\int \frac{1}{t}\mathrm{d}t-\int \frac{1}{t+1}\mathrm{d}t \\ =\ln \left | t\right |-\ln \left | t+1\right |+C \\ =\ln \left | e^{x}-1\right |+x+C \\ 9.(1).\int x\sqrt{x+1}\mathrm{d}x \\ 解:令t=\sqrt{x+1},则x=t^{2}-1, \\ \mathrm{d}x=\mathrm{d}\left ( t^{2}-1\right )=2t\mathrm{d}t, \\ 原式=2\int t^{2}\left ( t^{2}-1\right )\mathrm{d}t \\ =\frac{2}{5}t^{5}-\frac{2}{3}t^{3}+C \\ =\frac{\left ( x+1\right )\left ( 6x-4\right )}{15}\sqrt{x+1}+C \\ (9).\int \frac{1}{\sqrt[3]{x+1}+1}\mathrm{d}x \\ 解:令t=\sqrt[3]{x+1},则x=t^{3}-1, \\ \mathrm{d}x=\mathrm{d}\left (\sqrt[3]{x+1}+1\right )=3t^{2}\mathrm{d}t, \\ 原式=\frac{3t^{2}}{t+1}\mathrm{d}t \\ =\int \frac{3t^{2}+3t-3t-3+3}{t+1}\mathrm{d}t \\ =\int 3t\mathrm{d}t-\int 3\mathrm{d}t+\int \frac{3}{t+1}\mathrm{d}t \\ =\frac{3}{2}t^{2}-3t+3\ln\left | t+1 \right |+C \\ =\frac{3}{2}\sqrt[3]{\left ( x+1\right )^{2}}-3\sqrt[3]{x+1}+3\ln \left | \sqrt[3]{x+1}+1\right |+C \\ (12).\int \frac{1}{\left ( 1+x^{2}\right )^{2}}\mathrm{d}x \\ 解:令t=\arctan x,则x=\tan t, \\ \frac{1}{ 1+x^{2} }\mathrm{d}x=\mathrm{d}\tan x=\mathrm{d}t, \\ 原式=\int \frac{1}{1+\tan ^{2}t}\mathrm{d}t \\ =\int \cos ^{2}t\mathrm{d}t \\ =\frac{1}{2}\int \left ( \cos 2t+1\right )\mathrm{d}t \\ =\frac{1}{4}\sin 2t+\frac{1}{2}\mathrm{d}t+C \\ =\frac{1}{4}\cdot \frac{2x}{x^{2}+1}+\frac{1}{2}\arctan x+C \\ =\frac{x}{2\left ( x^{2}+1\right )}+\frac{1}{2}\arctan x+C \\ (14).\int \frac{1}{x\sqrt{x^{2}-1}}\mathrm{d}x \\ 解:令x=\frac{1}{\cos t},则t=\arccos \frac{1}{x}, \\ \mathrm{d}x=d\left ( \frac{1}{\cos t}\right )=\frac{\sin t}{\cos^{2}t}\mathrm{d}t, \\ 原式=\int \cos t \cdot \frac{\cos t}{\sin t}\cdot \frac{\sin t}{\cos^{2} t}\mathrm{d}t \\ =\int \mathrm{d}t \\ =t+C \\ =\arccos\frac{1}{x}+C \\ (15).\int \frac{x^{2}}{\sqrt{1-x^{2}}}\mathrm{d}x \\ 解:令x=\sin t,则t=\arcsin x, \\ \mathrm{d}x=\cos t\mathrm{d}t, \\ 原式=\int\frac{\sin^{2}t}{\cos t}\cdot \cos t\mathrm{d}t \\ =\int \sin^{2}t\mathrm{d}t \\ =\frac{1}{2}\int\left ( \cos 2t+1\right )\mathrm{d}t \\ =\frac{1}{4}\sin 2t+\frac{1}{2}t+C \\ =\frac{1}{2}x\sqrt{1-x^{2}}+\frac{1}{2}\arcsin x+C \\ 10.(2).\int x\sin x\mathrm{d}x \\ 解:原式=-\int x\mathrm{d}\left ( \cos x\right ) \\ =-x\cos x+\int \cos x \mathrm{d}x \\ =\sin x-x\cos x+C \\ (4).\int\ln\left ( x^{2}+1\right )\mathrm{d}x \\ 解:原式=x\ln\left ( x^{2}+1\right )-\int x\mathrm{d}\left [ \ln\left ( x^{2}+1\right )\right ] \\ =x\ln\left ( x^{2}+1\right )-2\int \frac{x^{2}}{x^{2}+1}\mathrm{d}x \\ =x\ln\left ( x^{2}+1\right )-2\int \mathrm{d}x+2\int \frac{1}{x^{2}+1}\mathrm{d}x \\ =x\ln\left ( x^{2}+1\right )-2x+2\arctan x+C \\ (4).\int x^{2}e^{-x}\mathrm{d}x \\ 解:原式=-\int x^{2}\mathrm{d}e^{-x} \\ =-\left (x^{2}e^{-x}-\int 2xe^{-x}\mathrm{d}x \right ) \\ =-x^{2}e^{-x}-2\int x\mathrm{d}e^{-x} \\ =-x^{2}e^{-x}-2\left ( xe^{-x}-\int e^{-x}\mathrm{d}x\right ) \\ =-x^{2}e^{-x}-2 xe^{-x}+2\int e^{-x}\mathrm{d}x \\ =-x^{2}e^{-x}-2 xe^{-x}-2e^{-x} \\ =-\left ( x^2+2x+2\right )e^{-x} </math>