「Template:Sandbox」:修訂間差異
無編輯摘要 |
無編輯摘要 |
||
第1行: | 第1行: | ||
{{SandboxNote}} | {{SandboxNote}} | ||
{{ | <math> | ||
24. | |||
\\ | |||
(1)x^{2}+y^{2}-xy=1 | |||
\\ | |||
解:2x+2y\cdot y^{'}=y+x\cdot y^{'} | |||
\\ | |||
y^{'}\left ( 2y-x\right )=y-2x | |||
\\ | |||
y=\frac{y-2x}{2y-x} | |||
\\ | |||
(4)y=1+xe^{y} | |||
\\ | |||
解:y^{'}=e^{y}+e^{y}\cdot y^{'}\cdot x | |||
\\ | |||
y^{'}\left ( 1-e^{y}\cdot x\right )=e^{y} | |||
\\ | |||
y^{'}=\frac{e^{y}}{1-e^{y}\cdot x} | |||
\\ | |||
27. | |||
\\ | |||
(1)y=x\sqrt{\frac{1-x}{1+x}} | |||
\\ | |||
解:\ln y=\ln x+\frac{1}{2}\ln \left | 1-x\right |-\frac{1}{2}\left | 1+x\right | | |||
\\ | |||
\frac{y^{'}}{y}=\frac{1}{x}-\frac{1}{2}\cdot \frac{1}{1-x}-\frac{1}{2}\cdot \frac{1}{1+x}=\frac{1}{x}-\frac{1}{1-x^{2}} | |||
\\ | |||
y^{'}=x\sqrt{\frac{1-x}{1+x}}\cdot \left ( \frac{1}{x}-\frac{1}{1-x^{2}}\right ) | |||
\\ | |||
=\frac{x\cdot \sqrt{1-x^{2}}}{1+x}\cdot \left ( \frac{1}{x}-\frac{1}{1-x^{2}}\right ) | |||
\\ | |||
=\frac{\sqrt{1-x^{2}}}{1+x}-\frac{x\sqrt{1-x^{2}}}{\left ( 1+x\right )\left ( 1-x^{2}\right )} | |||
\\ | |||
=\frac{\sqrt{1-x^{2}}}{1+x}\left ( 1-\frac{1}{1-x^{2}}\right ) | |||
\\ | |||
=-\frac{x^{2}\sqrt{1-x^{2}}}{\left ( 1+x\right )\left ( 1-x^{2}\right )} | |||
\\ | |||
(5)y=\left ( \sin x\right )^{\tan x} | |||
\\ | |||
解:\ln y=\tan x\ln \sin x | |||
\\ | |||
\frac{y^{'}}{y}=\frac{\ln \sin x}{\sin ^{2}x}+\frac{\cos x}{\sin x}\cdot \tan x=\frac{\ln \sin x}{\sin ^{2}x}+1 | |||
\\ | |||
y^{'}=\left ( \sin x\right )^{\tan x}\cdot \left ( \frac{\ln \sin x}{\sin ^{2}x}+1\right ) | |||
\\ | |||
=\left ( \sin x\right )^{\tan x-2}\ln \sin x+\left ( \sin x\right )^{\tan x} | |||
\\ | |||
28. | |||
\\ | |||
解:y^{\sin x}=\left ( \sin x\right )^{y} | |||
\\ | |||
\ln y^{\sin x}=\ln \left ( \sin x\right )^{y} | |||
\\ | |||
\sin x\ln y=y\ln \sin x | |||
\\ | |||
\cos x\ln y+\left ( \ln y\right )^{'}\sin x=y^{'}\ln \sin x+\left ( \ln \sin x\right )^{'}y | |||
\\ | |||
\cos x\ln y+y^{'}\frac{\sin x}{y}=y^{'}\ln \sin x+\frac{y\cdot \cos x}{\sin x} | |||
\\ | |||
y^{'}\left ( \frac{\sin x}{y}-\ln \sin x\right )=\frac{y\cdot \cos x}{\sin x}-\cos x\ln y | |||
\\ | |||
y^{'}\left ( \frac{\sin x-y\ln \sin x}{y}\right )=\frac{y-\sin x \ln y}{\tan x} | |||
\\ | |||
y^{'}=\frac{y\left ( y-\sin x\ln y\right )}{\tan x\left ( \sin x-y\ln \sin x\right )} | |||
\\ | |||
57. | |||
\\ | |||
(3)y=\ln x^{2} | |||
\\ | |||
解:\mathrm{d}y=\mathrm{d}\left ( \ln x^{2}\right ) | |||
\\ | |||
=\frac{1}{x^{2}}\mathrm{d}x^{2} | |||
\\ | |||
=\frac{2x}{x^{2}}\mathrm{d}x=\frac{2}{x}\mathrm{d}x | |||
\\ | |||
(5)y=e^{-x}\cos x | |||
\\ | |||
解:\mathrm{d}y=\mathrm{d}\left ( e^{-x}\cos x\right ) | |||
\\ | |||
\mathrm{d}y=\cos x\mathrm{d}e^{-x}+e^{-x}\mathrm{d}\cos x | |||
\\ | |||
\mathrm{d}y=-e^{-x}\cos x\mathrm{d}x+e^{-x}\sin x\mathrm{d}x | |||
\\ | |||
\mathrm{d}y=e^{-x}\left ( \sin x-\cos x\right )\mathrm{d}x | |||
\\ | |||
(8)y=\left ( e^{x}+e^{-x}\right )^{2} | |||
\\ | |||
解:\ln y=2\ln \left ( e^{x}+e^{-x}\right ) | |||
\\ | |||
\frac{\mathrm{d}y}{y}=\frac{2}{e^{x}+e^{-x}}\mathrm{d}\left ( e^{x}+e^{-x}\right ) | |||
\\ | |||
=\frac{2}{e^{x}+e^{-x}}\left ( \mathrm{d}e^{x}+\mathrm{d}e^{-x}\right ) | |||
\\ | |||
=\frac{2}{e^{x}+e^{-x}}\left ( e^{x}\mathrm{d}x-e^{-x}\mathrm{d}x\right ) | |||
\\ | |||
=\frac{2\left ( e^{x}-e^{-x}\right )}{e^{x}+e^{-x}}\mathrm{d}x | |||
\\ | |||
\mathrm{d}y=\frac{2\left ( e^{x}-e^{-x}\right )\left ( e^{x}+e^{-x}\right )^{2}}{e^{x}+e^{-x}}\mathrm{d}x | |||
\\ | |||
=2\left ( e^{2x}-e^{-2x}\right )\mathrm{d}x | |||
\\ | |||
58. | |||
\\ | |||
解:xy=e^{x+y} | |||
\\ | |||
y=\frac{e^{x+y}}{x} | |||
\\ | |||
\ln y=x+y-\ln x | |||
\\ | |||
\frac{\mathrm{d}y}{y}=\mathrm{d}x+\mathrm{d}y+\frac{1}{x}\mathrm{d}x | |||
\\ | |||
\mathrm{d}y\left ( \frac{y-1}{y}\right )=\frac{x+1}{x}\mathrm{d}x=\frac{y\left ( x+1\right )}{x\left ( y-1\right )}\mathrm{d}x | |||
\\ | |||
62. | |||
\\ | |||
(5)解:\cos 60^{\circ}20^{'} | |||
\\ | |||
\approx \cos 60^{\circ}-\sin 60^{\circ}\cdot \frac{20}{180\times 360}\pi =0.49916 | |||
\\ | |||
</math> | |||
---- | |||
<math> | |||
\\ | |||
7. | |||
解:要证nb^{n-1}\left ( a-b\right )< a^{n}-b^{n}< na^{n-1}\left ( a-b\right ) | |||
\\ | |||
因为a> b | |||
\\ | |||
所以只要证nb^{n-1}<a^{n-1}+ba^{n-2}+b^{2}a^{n-3}…+b^{n-1}<na^{n-1} | |||
\\ | |||
因为a>b | |||
\\ | |||
所以a^{n-1}+ba^{n-2}+b^{2}a^{n-3}…+b^{n-1}<a^{n-1}+aa^{n-2}+a^{2}a^{n-3}…+a^{n-1}=na^{n-1} | |||
\\ | |||
同理a^{n-1}+ba^{n-2}+b^{2}a^{n-3}…+b^{n-1}>nb^{n-1} | |||
\\ | |||
故得证 | |||
\\ | |||
9. | |||
\\ | |||
(1)\lim_{x\rightarrow 0}\frac{e^{x}-e^{-x}}{x} | |||
\\ | |||
解:原式=\lim_{x\rightarrow 0}\frac{e^{x}+e^{-x}}{1}=2 | |||
\\ | |||
(2)\lim_{x\rightarrow 1}\frac{\ln x}{x-1} | |||
\\ | |||
解:原式=\lim_{x\rightarrow 1}\frac{\frac{1}{x}}{1}=1 | |||
\\ | |||
(3)\lim_{x\rightarrow 1}\frac{x^{3}-3x^{2}+2}{x^{3}-x^{2}-x+1} | |||
\\ | |||
解:原式=\lim_{x\rightarrow 1}\frac{3x^{2}-6x}{3x^{2}-2x-1}=\infty | |||
\\ | |||
(8)\lim_{x\rightarrow 0^{+}}x^{m}\ln x\left ( m>0\right ) | |||
\\ | |||
解:原式=\lim_{x\rightarrow 0^{+}}\frac{\ln x}{x^{-m}} | |||
\\ | |||
=\lim_{x\rightarrow 0^{+}}\frac{\frac{1}{x}}{-mx^{-m-1}} | |||
\\ | |||
=\lim_{x\rightarrow 0^{+}}-mx^{m+2}=0 | |||
\\ | |||
(9)\lim_{x\rightarrow 0}\left ( \frac{1}{x}-\frac{1}{e^{x}-1}\right ) | |||
\\ | |||
解:原式=\lim_{x\rightarrow 0}\frac{e^{x}-1-x}{xe^{x}-x} | |||
\\ | |||
=\lim_{x\rightarrow 0}\frac{e^{x}-1}{e^{x}+xe^{x}-1} | |||
\\ | |||
=\lim_{x\rightarrow 0}\frac{e^{x}}{2e^{x}+xe^{x}}=\frac{1}{2} | |||
\\ | |||
(10)\lim_{x\rightarrow 0}\left ( 1+\sin x\right )^{\frac{1}{x}} | |||
\\ | |||
解:原式=\lim_{x\rightarrow 0}e^{\ln \left ( 1+\sin x\right )^{\frac{1}{x}}} | |||
\\ | |||
=\lim_{x\rightarrow 0}e^{\frac{\ln \left ( 1+\sin x\right )}{x}} | |||
\\ | |||
=e^{\lim_{x\rightarrow 0}\frac{\ln \left ( 1+\sin x\right )}{x}} | |||
\\ | |||
=e^{\lim_{x\rightarrow 0}\frac{\cos x}{1+\sin x}} | |||
\\ | |||
=e^{\frac{1}{1+0}}=e | |||
\\ | |||
(12)\lim_{x\rightarrow 0^{+}}x^{\sin x} | |||
\\ | |||
解:原式=\lim_{x\rightarrow 0^{+}}e^{\ln x^{\sin x}} | |||
\\ | |||
=\lim_{x\rightarrow 0^{+}}e^{\frac{\ln x}{\frac{1}{\sin x}}} | |||
\\ | |||
=e^{\lim_{x\rightarrow 0^{+}}\frac{\ln x}{\frac{1}{\sin x}}} | |||
\\ | |||
=e^{\lim_{x\rightarrow 0^{+}}\frac{\ln x}{\frac{1}{x}}} | |||
\\ | |||
=e^{\lim_{x\rightarrow 0^{+}}\frac{x^{-1}}{-x^{-2}}} | |||
\\ | |||
=e^{\lim_{x\rightarrow 0^{+}}-x} | |||
\\ | |||
=e^{-0} | |||
\\ | |||
=1 | |||
</math> |
於 2020年11月5日 (四) 05:55 的修訂
這是銻星百科的沙盒頁面。您可在此隨意練習編輯。
如要測試模板,可在模板沙盒中進行編輯。
- 不要在此撰寫條目或存放其他有價值的內容。
- 不要將此頁面重定向至其他頁面。
- 不要在其他頁面中使用此模板。
- 不要在沙盒裡保存有侵犯他人版權、攻擊性、誹謗中傷他人或他人隱私的內容。
- 不要在沙盒裡保存違反超理準則的內容。
- 不要移除此通知。
<math> 24. \\ (1)x^{2}+y^{2}-xy=1 \\ 解:2x+2y\cdot y^{'}=y+x\cdot y^{'} \\ y^{'}\left ( 2y-x\right )=y-2x \\ y=\frac{y-2x}{2y-x} \\ (4)y=1+xe^{y} \\ 解:y^{'}=e^{y}+e^{y}\cdot y^{'}\cdot x \\ y^{'}\left ( 1-e^{y}\cdot x\right )=e^{y} \\ y^{'}=\frac{e^{y}}{1-e^{y}\cdot x} \\ 27. \\ (1)y=x\sqrt{\frac{1-x}{1+x}} \\ 解:\ln y=\ln x+\frac{1}{2}\ln \left | 1-x\right |-\frac{1}{2}\left | 1+x\right | \\ \frac{y^{'}}{y}=\frac{1}{x}-\frac{1}{2}\cdot \frac{1}{1-x}-\frac{1}{2}\cdot \frac{1}{1+x}=\frac{1}{x}-\frac{1}{1-x^{2}} \\ y^{'}=x\sqrt{\frac{1-x}{1+x}}\cdot \left ( \frac{1}{x}-\frac{1}{1-x^{2}}\right ) \\ =\frac{x\cdot \sqrt{1-x^{2}}}{1+x}\cdot \left ( \frac{1}{x}-\frac{1}{1-x^{2}}\right ) \\ =\frac{\sqrt{1-x^{2}}}{1+x}-\frac{x\sqrt{1-x^{2}}}{\left ( 1+x\right )\left ( 1-x^{2}\right )} \\ =\frac{\sqrt{1-x^{2}}}{1+x}\left ( 1-\frac{1}{1-x^{2}}\right ) \\ =-\frac{x^{2}\sqrt{1-x^{2}}}{\left ( 1+x\right )\left ( 1-x^{2}\right )} \\ (5)y=\left ( \sin x\right )^{\tan x} \\ 解:\ln y=\tan x\ln \sin x \\ \frac{y^{'}}{y}=\frac{\ln \sin x}{\sin ^{2}x}+\frac{\cos x}{\sin x}\cdot \tan x=\frac{\ln \sin x}{\sin ^{2}x}+1 \\ y^{'}=\left ( \sin x\right )^{\tan x}\cdot \left ( \frac{\ln \sin x}{\sin ^{2}x}+1\right ) \\ =\left ( \sin x\right )^{\tan x-2}\ln \sin x+\left ( \sin x\right )^{\tan x} \\ 28. \\ 解:y^{\sin x}=\left ( \sin x\right )^{y} \\ \ln y^{\sin x}=\ln \left ( \sin x\right )^{y} \\ \sin x\ln y=y\ln \sin x \\ \cos x\ln y+\left ( \ln y\right )^{'}\sin x=y^{'}\ln \sin x+\left ( \ln \sin x\right )^{'}y \\ \cos x\ln y+y^{'}\frac{\sin x}{y}=y^{'}\ln \sin x+\frac{y\cdot \cos x}{\sin x} \\ y^{'}\left ( \frac{\sin x}{y}-\ln \sin x\right )=\frac{y\cdot \cos x}{\sin x}-\cos x\ln y \\ y^{'}\left ( \frac{\sin x-y\ln \sin x}{y}\right )=\frac{y-\sin x \ln y}{\tan x} \\ y^{'}=\frac{y\left ( y-\sin x\ln y\right )}{\tan x\left ( \sin x-y\ln \sin x\right )} \\ 57. \\ (3)y=\ln x^{2} \\ 解:\mathrm{d}y=\mathrm{d}\left ( \ln x^{2}\right ) \\ =\frac{1}{x^{2}}\mathrm{d}x^{2} \\ =\frac{2x}{x^{2}}\mathrm{d}x=\frac{2}{x}\mathrm{d}x \\ (5)y=e^{-x}\cos x \\ 解:\mathrm{d}y=\mathrm{d}\left ( e^{-x}\cos x\right ) \\ \mathrm{d}y=\cos x\mathrm{d}e^{-x}+e^{-x}\mathrm{d}\cos x \\ \mathrm{d}y=-e^{-x}\cos x\mathrm{d}x+e^{-x}\sin x\mathrm{d}x \\ \mathrm{d}y=e^{-x}\left ( \sin x-\cos x\right )\mathrm{d}x \\ (8)y=\left ( e^{x}+e^{-x}\right )^{2} \\ 解:\ln y=2\ln \left ( e^{x}+e^{-x}\right ) \\ \frac{\mathrm{d}y}{y}=\frac{2}{e^{x}+e^{-x}}\mathrm{d}\left ( e^{x}+e^{-x}\right ) \\
=\frac{2}{e^{x}+e^{-x}}\left ( \mathrm{d}e^{x}+\mathrm{d}e^{-x}\right ) \\ =\frac{2}{e^{x}+e^{-x}}\left ( e^{x}\mathrm{d}x-e^{-x}\mathrm{d}x\right ) \\ =\frac{2\left ( e^{x}-e^{-x}\right )}{e^{x}+e^{-x}}\mathrm{d}x \\ \mathrm{d}y=\frac{2\left ( e^{x}-e^{-x}\right )\left ( e^{x}+e^{-x}\right )^{2}}{e^{x}+e^{-x}}\mathrm{d}x \\ =2\left ( e^{2x}-e^{-2x}\right )\mathrm{d}x \\ 58. \\ 解:xy=e^{x+y} \\ y=\frac{e^{x+y}}{x} \\ \ln y=x+y-\ln x \\ \frac{\mathrm{d}y}{y}=\mathrm{d}x+\mathrm{d}y+\frac{1}{x}\mathrm{d}x \\ \mathrm{d}y\left ( \frac{y-1}{y}\right )=\frac{x+1}{x}\mathrm{d}x=\frac{y\left ( x+1\right )}{x\left ( y-1\right )}\mathrm{d}x \\ 62. \\ (5)解:\cos 60^{\circ}20^{'} \\ \approx \cos 60^{\circ}-\sin 60^{\circ}\cdot \frac{20}{180\times 360}\pi =0.49916 \\ </math>
<math> \\ 7. 解:要證nb^{n-1}\left ( a-b\right )< a^{n}-b^{n}< na^{n-1}\left ( a-b\right ) \\ 因為a> b \\ 所以只要證nb^{n-1}<a^{n-1}+ba^{n-2}+b^{2}a^{n-3}…+b^{n-1}<na^{n-1} \\ 因為a>b \\ 所以a^{n-1}+ba^{n-2}+b^{2}a^{n-3}…+b^{n-1}<a^{n-1}+aa^{n-2}+a^{2}a^{n-3}…+a^{n-1}=na^{n-1} \\ 同理a^{n-1}+ba^{n-2}+b^{2}a^{n-3}…+b^{n-1}>nb^{n-1} \\ 故得證 \\ 9. \\ (1)\lim_{x\rightarrow 0}\frac{e^{x}-e^{-x}}{x} \\ 解:原式=\lim_{x\rightarrow 0}\frac{e^{x}+e^{-x}}{1}=2 \\ (2)\lim_{x\rightarrow 1}\frac{\ln x}{x-1} \\ 解:原式=\lim_{x\rightarrow 1}\frac{\frac{1}{x}}{1}=1 \\ (3)\lim_{x\rightarrow 1}\frac{x^{3}-3x^{2}+2}{x^{3}-x^{2}-x+1} \\ 解:原式=\lim_{x\rightarrow 1}\frac{3x^{2}-6x}{3x^{2}-2x-1}=\infty \\ (8)\lim_{x\rightarrow 0^{+}}x^{m}\ln x\left ( m>0\right ) \\ 解:原式=\lim_{x\rightarrow 0^{+}}\frac{\ln x}{x^{-m}} \\ =\lim_{x\rightarrow 0^{+}}\frac{\frac{1}{x}}{-mx^{-m-1}} \\ =\lim_{x\rightarrow 0^{+}}-mx^{m+2}=0 \\ (9)\lim_{x\rightarrow 0}\left ( \frac{1}{x}-\frac{1}{e^{x}-1}\right ) \\ 解:原式=\lim_{x\rightarrow 0}\frac{e^{x}-1-x}{xe^{x}-x} \\ =\lim_{x\rightarrow 0}\frac{e^{x}-1}{e^{x}+xe^{x}-1} \\ =\lim_{x\rightarrow 0}\frac{e^{x}}{2e^{x}+xe^{x}}=\frac{1}{2} \\ (10)\lim_{x\rightarrow 0}\left ( 1+\sin x\right )^{\frac{1}{x}} \\ 解:原式=\lim_{x\rightarrow 0}e^{\ln \left ( 1+\sin x\right )^{\frac{1}{x}}} \\ =\lim_{x\rightarrow 0}e^{\frac{\ln \left ( 1+\sin x\right )}{x}} \\ =e^{\lim_{x\rightarrow 0}\frac{\ln \left ( 1+\sin x\right )}{x}} \\ =e^{\lim_{x\rightarrow 0}\frac{\cos x}{1+\sin x}} \\ =e^{\frac{1}{1+0}}=e \\ (12)\lim_{x\rightarrow 0^{+}}x^{\sin x} \\ 解:原式=\lim_{x\rightarrow 0^{+}}e^{\ln x^{\sin x}} \\ =\lim_{x\rightarrow 0^{+}}e^{\frac{\ln x}{\frac{1}{\sin x}}} \\ =e^{\lim_{x\rightarrow 0^{+}}\frac{\ln x}{\frac{1}{\sin x}}} \\ =e^{\lim_{x\rightarrow 0^{+}}\frac{\ln x}{\frac{1}{x}}} \\ =e^{\lim_{x\rightarrow 0^{+}}\frac{x^{-1}}{-x^{-2}}} \\ =e^{\lim_{x\rightarrow 0^{+}}-x} \\ =e^{-0} \\ =1 </math>