「Template:Sandbox」:修訂間差異

無編輯摘要
已将重定向目标从锑星百科:沙盒更改为主命名空间沙盒
 
(未顯示由 15 位使用者於中間所作的 214 次修訂)
第1行: 第1行:
{{SandboxNote}}
#REDIRECT [[主命名空间沙盒]]
<math>
(2)
解:\lim_{x\rightarrow 0}f(x)=\lim_{x\rightarrow 0}\sin x\cos \frac{1}{x}=0
\\
所以f(0)=0
\\
(3)
解:若k=0,则\lim_{x\rightarrow 0}f(x)=\lim_{x\rightarrow 0}\ln 1^{\frac{m}{x}}=0,则f(0)=0
\\
若k\neq 0,则\lim_{x\rightarrow 0}f(x)=\lim_{x\rightarrow 0}\ln \left [ \left ( 1+kx\right )^{\frac{k}{x}}\right ]^{\frac{m}{k}}
\\
=\lim_{x\rightarrow 0}\ln e^{\frac{m}{k}}=\frac{m}{k},则f(0)=\frac{m}{k}
\\
36.解:k=1,因为此时\lim_{x\rightarrow 0^{-}}f(x)=\lim_{x\rightarrow 0^{-}}\frac{1}{x}\sin x=1
\\
\lim_{x\rightarrow 0^{+}}f(x)=\lim_{x\rightarrow 0^{+}}\left ( x\sin \frac{1}{x}+1\right )=1
\\
有\lim_{x\rightarrow 0^{+}}f(x)=\lim_{x\rightarrow 0^{-}}f(x)=\lim_{x\rightarrow 0}f(x)=1=f(0),所以f(x)在x=0点连续
\\
由初等函数的连续性可得,f(x)在(-\infty ,0)和(0,+\infty)上连续
\\
所以此时f(x)在其定义域R上连续
\\
39.证明:设f(x)=x^{5}-3x-1,则f(1)=-3,f(2)=25
\\
f(1)\cdot f(2)< 0
\\
由初等函数的连续性可得f(x)在(1,2)上连续,所以f(x)在(1,2)上至少存在一个零点,故得证。
\\
40.证明:令y=f(x),则f(1)=-5,f(2)=8
\\
f(1)\cdot f(2)< 0
\\
由初等函数的连续性可得f(x)在(1,2)上连续,故得证。
\\
40.证明:f(0)=-1,f(2)=e^{2}-2
\\
f(1)\cdot f(2)=2-e^{2}<0
\\
由初等函数的连续性可得f(x)在(0,2)上连续,故得证。
\\
42.(1)解:原式=\frac{\lim_{x\rightarrow 0}\ln \left ( 1+x^{2}\right )}{\lim_{x\rightarrow 0}\sin \left ( 1+x^{2}\right )}=\frac{\ln 1}{\sin 1}=0
\\
(2)解:原式=\lim_{x\rightarrow 0}\sqrt{\frac{\lg 100}{a^{x}}}
\\
若a\neq 0,则\lim_{x\rightarrow 0}\left ( \frac{\lg 100+x}{a^{x}+\arcsin x}\right )^{\frac{1}{2}}=\sqrt{\frac{\lg 100}{1}}=\sqrt{2}
\\
若a=0,则\lim_{x\rightarrow 0}\left ( \frac{\lg 100+x}{a^{x}+\arcsin x}\right )^{\frac{1}{2}}={\infty }
\\
</math>
 
----
 
<math>
\\
21.(3)
\\
解:y^{'}=9\left ( 3x+5\right )^{2}\left ( 5x+4\right )^{5}+25\left ( 3x+5\right )^{3}\left ( 5x+4\right )^{4}
\\
=\left [ 9\left ( 5x+4\right )+25\left ( 3x+5\right )\right ]\left ( 3x+5\right )^{2}\left ( 5x+4\right )^{4}
\\
=3\left ( 40x+37\right )\left ( 3x+5\right )^{2}\left ( 5x+4\right )^{4}
\\
(6)解:y^{'}=\frac{1}{2\sqrt{x^{2}-a^{2}}}\cdot  2x
\\
=\frac{x}{\sqrt{x^{2}-a^{2}}}
\\
(7)解:y^{'}=\frac{\sqrt{1-x^{2}}-x\cdot \frac{1}{2\sqrt{1-x^{2}}}\cdot \left ( -1\right )\cdot 2x}{1-x^{2}}
\\
=\frac{\sqrt{1-x^{2}}+\frac{x^{2}}{\sqrt{1-x^{2}}}}{1-x^{2}}
\\
=\frac{1}{\sqrt{1-x^{2}}\cdot 1-x^{2}}
\\
=\frac{\sqrt{1-x^{2}}}{\left (  1-x^{2}\right )^{2}}
\\
(8)解:y^{'}=\frac{1}{\left ( 1+x^{2}\right )\cdot \ln a}\cdot 2x
\\
\frac{2x}{\left ( 1+x^{2}\right )\cdot \ln a}
\\
(17)解:y^{'}=\frac{1}{2\cos ^{2}\frac{x}{2}}-\frac{1}{2}
\\
(18)解:y^{'}=\frac{1}{\tan \frac{x}{2}}\cdot \frac{1}{\cos ^{2}\frac{x}{2}}\cdot \frac{1}{2}
\\
\frac{1}{2\sin \frac{x}{2}\cos \frac{x}{2}}
\\
=\frac{1}{\sin x}
\\
(19)解:y^{'}=2x\cdot \sin \frac{1}{x}+x^{2}\cdot +\cos \frac{1}{x}\cdot \left ( -1\right )\cdot \frac{1}{x^{2}}
\\
=2x\cdot \sin \frac{1}{x}-\cos \frac{1}{x}
\\
(20)解:y^{'}=\frac{1}{\ln x}\cdot \frac{1}{x}
\\
=\frac{1}{x\ln x}
\\
23.(5)
\\
解:y^{'}=2\arcsin \frac{x}{2}\cdot \frac{1}{\sqrt{1-\frac{1}{x}}}\cdot \frac{1}{2}
\\
=\arcsin \frac{x}{2}\cdot \frac{\sqrt{1-\frac{1}{x}}}{1-\frac{1}{x}}
\\
=\arcsin \frac{x}{2}\cdot \frac{x\sqrt{\frac{x-1}{x}}}{x-1}
\\
=\frac{\arcsin \frac{x}{2}\cdot \sqrt{x^{2}-x}}{x-1}
\\
(6)解:y^{'}=\sqrt{1-x^{2}}+x\cdot \frac{1}{2\sqrt{1-x^{2}}}\cdot \left ( -1\right )\cdot 2x+\frac{1}{\sqrt{1-x^{2}}}
\\
=\sqrt{1-x^{2}}+\frac{1}{\sqrt{1-x^{2}}}-\frac{x^{2}}{\sqrt{1-x^{2}}}
\\
=2\sqrt{1-x^{2}}
</math>