|
|
(未显示15个用户的223个中间版本) |
第1行: |
第1行: |
| {{SandboxNote}}
| | #REDIRECT [[主命名空间沙盒]] |
| 另有一个[[Template:Sandbox/Template|模板沙盒]]。
| |
| | |
| 23、(1)
| |
| \\
| |
| 解:原式=\lim_{x\rightarrow 0}\frac{\sin x}{x}\cdot(\frac{1}{\cos x}-1)=0
| |
| \\
| |
| (2)
| |
| \\
| |
| 解:原式=\lim_{x\rightarrow 0}\frac{2{\sin x}{\cos x}}{{\sin x}({\cos^{2} x}-{\sin^{2} x})+2{\sin x}{\cos^{2} x}}
| |
| \\
| |
| =\lim_{x\rightarrow 0}\frac{2{\cos x}}{3{\cos^{2} x}-{\sin^{2} x}}
| |
| \\
| |
| =\lim_{x\rightarrow 0}\frac{2{\cos x}}{4{\cos^{2} x}-1}
| |
| \\
| |
| =\lim_{x\rightarrow 0}\frac{2{\cos x}+1-1}{4{\cos^{2} x}-1}
| |
| \\
| |
| =\lim_{x\rightarrow 0}(\frac{1}{2{\cos x}+1}+\frac{1}{4{\cos^{2} x}-1})=\frac{2}{3}
| |
| \\
| |
| (3)
| |
| \\
| |
| 解:原式=\lim_{x\rightarrow 0}(\frac{x}{x+{\sin x}}+\frac{{\sin x}}{x+{\sin x}})
| |
| \\
| |
| =\lim_{x\rightarrow 0}(\frac{1}{1+\frac{\sin x}{x}}+\frac{1}{1+\frac{x}{\sin x}})=0
| |
| \\
| |
| \\
| |
| 24、(1)
| |
| \\
| |
| 解:
| |
| \\
| |
| 令t={\frac{1}{2}}x
| |
| \\
| |
| 则原式=\lim_{t\rightarrow {\infty}}(1+{\frac{1}{t}})^{4t}
| |
| \\
| |
| =\lim_{t\rightarrow {\infty}}[(1+{\frac{1}{t}})^{t}]^{4}
| |
| \\
| |
| =e^{4}
| |
| \\
| |
| (3)
| |
| \\
| |
| 解:
| |
| \\
| |
| 令t=-{\frac{1}{2}}x
| |
| \\
| |
| 则原式=\lim_{t\rightarrow {\infty}}(2+{\frac{1}{t}})^{-2t}
| |
| \\
| |
| =\lim_{t\rightarrow {\infty}}[(1+{\frac{1}{2t}})^{2t}]^{-1}=\frac{1}{e}
| |
| \\
| |
| (5)
| |
| \\
| |
| 解:原式=\lim_{x\rightarrow {+\infty}}{(1-{\frac{1}{\sqrt{x}}}})^{\sqrt{x}}\cdot{(1+{\frac{1}{\sqrt{x}}}})^{\sqrt{x}}
| |
| \\
| |
| =\lim_{x\rightarrow {+\infty}}(\frac{1}{1+{\frac{1}{-\sqrt{x}}}})^{-\sqrt{x}}\cdot{(1+{\frac{1}{\sqrt{x}}}})^{\sqrt{x}}
| |
| \\
| |
| =1
| |
| \\
| |
| (7)
| |
| \\
| |
| 解:原式=\lim_{x\rightarrow 0}\frac{3x}{\sin^{2}3x}\cdot\frac{\ln(1+2x)}{2x}\cdot\frac{2}{3}=\frac{2}{3}
| |
| \\
| |
| 11、(3)
| |
| \\
| |
| 解:原式=\lim_{x\rightarrow \sqrt{3}}({x^{2}-3})\cdot\lim_{x\rightarrow \sqrt{3}}\frac{1}{x^{4}+x^{2}+1}=0
| |
| \\
| |
| (6)
| |
| \\
| |
| 解:原式=\lim_{x\rightarrow 0}\frac{x(4x^{2}+2x+1)}{x(3x+2)}
| |
| \\
| |
| =\lim_{x\rightarrow 0}\frac{4x^{2}+2x+1}{3x+2}
| |
| \\
| |
| =\frac{1}{2}
| |
| \\
| |
| (7)
| |
| \\
| |
| 解:原式=\lim_{x\rightarrow 1}\frac{(x-2)(x-1)}{(1-x)(1+x)}
| |
| \\
| |
| =\lim_{x\rightarrow 1}\frac{2-x}{1+x}=\frac{1}{2}
| |
| \\
| |
| (11)
| |
| \\
| |
| 解:原式=\lim_{x\rightarrow \infty }\frac{2x+3}{6x-1}
| |
| \\
| |
| =\lim_{x\rightarrow \infty }\frac{2+\frac{3}{x}}{6-\frac{1}{x}}=\frac{1}{3}
| |
| \\
| |
| (18)
| |
| \\
| |
| 解:令t=\sqrt{1+x^{2}}
| |
| \\
| |
| 则x\rightarrow 0时t\rightarrow 1
| |
| \\
| |
| 原式=\lim_{t\rightarrow 1}\frac{t^{2}-1}{1-t}
| |
| \\
| |
| =\lim_{t\rightarrow 1}(-1-t)=-2
| |
| \\
| |
| (20)
| |
| \\
| |
| 不会做
| |
| \\
| |
| 14、
| |
| \\
| |
| 解:x\rightarrow 0时,
| |
| \\
| |
| 显然\lim_{x^{-}\rightarrow 0}f(x)=\lim_{x^{-}\rightarrow 0}(x^{2}-2x)=0
| |
| \\
| |
| 假设存在极限,则有
| |
| \\\lim_{x^{+}\rightarrow 0}f(x)=\lim_{x^{-}\rightarrow 0}f(x)=0
| |
| \\
| |
| 即\lim_{x^{-}\rightarrow 0}\frac{1}{x^2}=0
| |
| \\
| |
| 即\forall \varepsilon > 0,\exists \delta > 0,x\in (0-\delta,0),\left | \frac{1}{x^2}\right |< \varepsilon
| |
| \\
| |
| 即x<-\sqrt{\varepsilon}
| |
| \\
| |
| 当\varepsilon=1时,
| |
| \\
| |
| x<-1
| |
| \\
| |
| 不存在\delta > 0,\forall x<-1,x\in (0-\delta,0),\left | \frac{1}{x^2}\right |<1
| |
| \\
| |
| 所以x\rightarrow 0时不存在极限
| |
| \\
| |
| x\rightarrow 1时,
| |
| \\
| |
| 存在极限\lim_{x\rightarrow 1}f(x)=\lim_{x\rightarrow 1}(x^{2}-2x)=-1
| |
| \\
| |
| x\rightarrow 2时,
| |
| \\
| |
| \lim_{x^{-}\rightarrow 2}f(x)=\lim_{x^{-}\rightarrow 2}(x^{2}-2x)=0
| |
| \\
| |
| \lim_{x^{+}\rightarrow 2}f(x)=\lim_{x^{+}\rightarrow 2}(3x-6)=0
| |
| \\
| |
| \lim_{x^{-}\rightarrow 2}f(x)=\lim_{x^{+}\rightarrow 2}f(x)=0
| |
| \\
| |
| 所以存在极限\lim_{x\rightarrow 2}f(x)=0
| |
| \\
| |
| x\rightarrow -\infty 时,
| |
| \\
| |
| \lim_{x\rightarrow -\infty}f(x)=\lim_{x\rightarrow -\infty}\frac{1}{x^{2}}=0
| |
| \\
| |
| x\rightarrow +\infty 时,
| |
| \\
| |
| \lim_{x\rightarrow +\infty}f(x)=\lim_{x\rightarrow -\infty}(3x-6)=+\infty
| |
| \\
| |
| 33、
| |
| \\
| |
| 解:
| |
| \\
| |
| 由初等函数的性质可得,f(x)在[0,1)和[1,2]上连续
| |
| \\
| |
| \lim_{x^{-}\rightarrow 1}=2
| |
| \\
| |
| \lim_{x^{-}\rightarrow 1}=2
| |
| \\
| |
| 所以\lim_{x \rightarrow 1}=2=f(x)
| |
| \\
| |
| 所以f(x)在[0,2]上连续
| |
| \\
| |
| 34、(1)
| |
| \\
| |
| 解:
| |
| \\
| |
| 原式=\lim_{x\rightarrow 0}\frac{\frac{1}{2}x^{2}}{x^{2}}=\frac{1}{2}
| |
| \\
| |
| (3)
| |
| \\
| |
| 解:
| |
| \\
| |
| 原式=\lim_{x\rightarrow 0}\frac{\tan x-\sin x}{\sqrt{2+x^{2}}(e^{x^{3}}-1)}
| |
| \\
| |
| =\lim_{x\rightarrow 0}\frac{\tan x-\sin x}{\sqrt{2+x^{2}}\cdot x^{3}}
| |
| \\
| |
| =\lim_{x\rightarrow 0}\frac{\sin x}{\sqrt{2+x^{2}}\cdot x^{3}}\cdot \frac{1-\cos x}{\cos x}
| |
| \\
| |
| =\lim_{x\rightarrow 0}\frac{x}{\sqrt{2+x^{2}}\cdot x^{3}}\cdot \frac{\frac{1}{2}x^{2}}{\cos x}
| |
| \\
| |
| =\lim_{x\rightarrow 0}\frac{1}{2\cos x\sqrt{2+x^{2}}}=\frac{\sqrt{2}}{4}
| |
| \\
| |
| (4)
| |
| \\
| |
| 解:令t=x-a
| |
| \\
| |
| 原式=\lim_{t\rightarrow 0}\frac{\cos (t+a)-\cos (x-t)}{t}
| |
| \\
| |
| =\lim_{t\rightarrow 0}\frac{\cos t(\cos a-\cos x)-\sin t(\sin a+\sin x)}{t}
| |
| \\
| |
| =\lim_{t\rightarrow 0}(-2\cdot \frac{\cos t\sin\frac{a+x}{2}\sin\frac{a-x}{2}+\sin t\sin\frac{a+x}{2}\cos\frac{a-x}{2}}{t})
| |
| \\
| |
| =\lim_{t\rightarrow 0}(-2\cdot\sin\frac{a+x}{2}\cdot \frac{\sin t\cos \frac{t}{2}-\cos t\sin \frac{t}{2}}{t})
| |
| \\
| |
| =\lim_{t\rightarrow 0}(-2\cdot\sin\frac{a+x}{2}\cdot \sin\frac{t}{2}\cdot\frac{1}{t})
| |
| \\
| |
| =\lim_{t\rightarrow 0}(-2\cdot\sin\frac{a+x}{2}\cdot \frac{t}{2}\cdot\frac{1}{t})
| |
| \\
| |
| =\lim_{t\rightarrow 0}(-\sin \frac{a+x}{2})
| |
| \\
| |
| =\lim_{t\rightarrow 0}(-\sin \frac{2a}{2})=-\sin a
| |