编辑“︁超理文献:超数学——正方体分析”︁
该编辑可以被撤销。 请检查下面的对比以核实您想要撤销的内容,然后发布下面的更改以完成撤销。
最后版本 | 您的文本 | ||
第162行: | 第162行: | ||
但是,对于负数维度的情况,我们要怎么分析呢?仙童数学指出,'''''对于N为负数的情况,我们可以对(d+2)^N进行泰勒展开,从而得到d^i项的系数'''''。进一步地,我们还可以分析N为分数的情况。d^i项的系数为f在0处的i阶导数除以i的阶乘。 | 但是,对于负数维度的情况,我们要怎么分析呢?仙童数学指出,'''''对于N为负数的情况,我们可以对(d+2)^N进行泰勒展开,从而得到d^i项的系数'''''。进一步地,我们还可以分析N为分数的情况。d^i项的系数为f在0处的i阶导数除以i的阶乘。 | ||
这里,我们附上N为-1到-5时的情况(为了简洁,我们只展开到4维): | |||
* (d+2)<sup>-1</sup>=d<sup>0</sup>/2-d<sup>1</sup>/4+d<sup>2</sup>/8-d<sup>3</sup>/16+d<sup>4</sup>/32+…… | * (d+2)<sup>-1</sup>=d<sup>0</sup>/2-d<sup>1</sup>/4+d<sup>2</sup>/8-d<sup>3</sup>/16+d<sup>4</sup>/32+…… | ||
第169行: | 第169行: | ||
* (d+2)<sup>-4</sup>=d<sup>0</sup>/16-d<sup>1</sup>/8+(5*d<sup>2</sup>)/32-(5*d<sup>3</sup>)/32+(35*d<sup>4</sup>)/256+…… | * (d+2)<sup>-4</sup>=d<sup>0</sup>/16-d<sup>1</sup>/8+(5*d<sup>2</sup>)/32-(5*d<sup>3</sup>)/32+(35*d<sup>4</sup>)/256+…… | ||
* (d+2)<sup>-5</sup>=d<sup>0</sup>/32-(5*d<sup>1</sup>)/64+(15*d<sup>2</sup>)/128-(35*d<sup>3</sup>)/256+(35*d<sup>4</sup>)/256+…… | * (d+2)<sup>-5</sup>=d<sup>0</sup>/32-(5*d<sup>1</sup>)/64+(15*d<sup>2</sup>)/128-(35*d<sup>3</sup>)/256+(35*d<sup>4</sup>)/256+…… | ||
我们发现,在N为负整数的前提下,i为偶数时系数为正,i为奇数时系数为负。对于N为分数的情况,这里我们不做进一步的探究。 | |||
事实上,也可以通过广义二项式定理来分析N维数学对象与1维至N维数学对象的数量关系,但是限于篇幅,这里我们不做进一步的探究。 | |||
== 衍生 == | == 衍生 == | ||
对于-1维的情况,如果我们截断到4维,则有(d+2)<sup>-1</sup>=d<sup>0</sup>/2-d<sup>1</sup>/4+d<sup>2</sup>/8-d<sup>3</sup>/16+d<sup>4</sup>/32+o(d<sup>4</sup>) | 对于-1维的情况,如果我们截断到4维,则有(d+2)<sup>-1</sup>=d<sup>0</sup>/2-d<sup>1</sup>/4+d<sup>2</sup>/8-d<sup>3</sup>/16+d<sup>4</sup>/32+o(d<sup>4</sup>) | ||
如果我们用 | 如果我们用一维、二维、三维、四维的正方体作为基向量表示它,也就是用D(1)=(1,0,0,0)、D(2)=(2,1,0,0)、D(3)=(4,4,1,0)、D(4)=(8,12,6,1)表示D(-1)=(1/2,-1/4+1/8,-1/16) | ||
则有D(-1)=2*D(1)-3/2*D(2)+1/2*D(3)-1/16*D(4) |